English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27526/28972 (95%)
Visitors : 24042869      Online Users : 2620
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.lib.cyut.edu.tw:8080/handle/310901800/27294


    Title: 以倒傳遞類神經網路及多元線性迴歸探討營建工地對臺中縣PM2.5之影響
    Using Back-Propagation Neural Network and Multiple Linear Regression to Analyze the Impact of Construction Sites on PM2.5 in Taichung County
    Authors: 黃皎椀
    Huang, Chiao-Wan
    Contributors: 環境工程與管理系碩士班
    白子易
    Tzy-Yi Pai
    Keywords: 倒傳遞類神經網路;多元線性迴歸;臺中縣;懸浮微粒(PM2.5)
    Multiple Linear Regression;Back-Propagation Neural Network;PM2.5;Taichung County
    Date: 2011-12-31
    Issue Date: 2016-01-11 16:26:08 (UTC+8)
    Abstract: 本研究應用倒傳遞類神經網路(Back-Propagation Neural Network, BNN)與多元線性迴歸(Multiple Linear Regression, MLR)建立臺中縣營建工地空氣品質預測模式,使用之變數為懸浮微粒(PM2.5)、懸浮微粒(PM10)、建築(房屋)工程(SRC)、建築(房屋)工程(RC)、隧道工程及其他營建工程,以2008年1月至11月數據建立最適化網路後,對2008年12月之PM2.5作預測,並比較BNN與MLR之預測結果。本研究利用BNN及MLR模擬預測臺中縣PM2.5之研究結果顯示,BNN及MLR模型對於PM2.5之濃度及變動趨勢皆可掌握,其中MLR於大里之測試及預測效果較BNN為佳,預測之相關係數以大里(6V1)及沙鹿(6V1、5V1、4V1)之0.47為最高,以豐原(4V1、3 V1、2 V1)之0.29為最低; BNN於豐原及沙鹿之測試及預測效果較MLR為佳,預測之相關係數以豐原(6V1、4V1~2V1)之0.94為最高,以大里(4V1、3V1)之0.40為最低。BNN訓練之相關係數介於0.73~0.95,MLR測試之相關係數介於0.68~0.76,模擬預測結果BNN之相關係數介於0.4~0.94,MLR之相關係數介於0.29~0.47,整体而言,BNN預測結果優於MLR。
    This research uses Back-Propagation Neural Network(BNN)and Multiple Linear Regression(MLR)to establish construction sites’ air quality forecasting module in Taichung County. The variables are PM2.5, PM10, SRC, RC, tunnel constructions and other construction works. By using the optimized network established from data of January to November 2008, a forecast was produced using BNN and MLR for the result in 2008.By using BNN and MLR, this research have produced a simulated forecast for PM2.5 in Taichung County. Both BNN and MLR forecasting models have showed capabilities in capturing the changes and trend of the PM2.5 concentration level. At DaLi MLR outperformed BNN in forecasting results in DaLi, the forecasted relative factor is highest in DaLi(6V1)and ShaLu(6V1, 5V1, 4V1)at 0.47 and lowest at FongYuang(4V1, 3V1, 2V1)at 0.29. BNN outperformed MLR in forecasting results in FongYuan and ShaLu, the forecasted relative factor is highest in FongYuan(4V1, 4V1~2V1)at 0.94 and lowest in DaLi(4V1, 3V1)at DaLi. BNN’s relative training factor is between 0.73~0.95 whereas MLR’s relative testing factor is between 0.68~0.76. The relative factor of simulated forecast is between 0.4~0.94 for BNN and 0.29~0.47 for MLR, overall speaking BNN’s forecast is better than MLR.
    Appears in Collections:[環境工程與管理系] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    099CYUT5087007-001.pdf3872KbAdobe PDF486View/Open


    All items in CYUTIR are protected by copyright, with all rights reserved.


    著作權政策宣告
    1.本網站之數位內容為朝陽科技大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度、合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(yjhung@cyut.edu.tw),維護人員將立即採取移除該數位著作等補救措施。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback