Bio-ethanol fireplace

指導教授：陳維隆
設計者：陳忠慶

中華民國102年6月5日
Biology
Ethanol
Fireplace

102
級
（進）
朝陽科技大學
工業設計系
Bio-ethanol fireplace

設計者
陳忠慶

主指導老師：

導師：

系主任：

中華民國 102 年 6 月 5 日
目 錄

設計摘要 .. 1
壹、設計動機 .. 2
貳、設計目標 .. 3
參、設計流程圖 .. 4
肆、設計展開說明
 一、資料蒐集、整理與分析
 (一) 火的歷史 .. 5
 (二) 壁爐的歷史 .. 6
 (三) 生質燃料與壁爐 .. 7
 (四) 使用情境 ... 8
 (五) 壁爐分析 ... 9
 (六) 結構分析 ... 10
 (七) 競爭產品分析 .. 11
 二、視覺規範
 (一) 十字分析 .. 12
 (二) Image board ... 13
 三、設計規範 .. 14
 四、初步構想提案
 (一) 造形構想發展：概念、構想、草圖、草模、分析、定案 15
 五、構想提案
 (一) 提案1：概念、構想、草圖、分析、定案 17
 (二) 提案2：概念、構想、草圖、草模、分析、定案 20
 (三) 草模： .. 25
 (四) 模型修改 ... 26
 (五) 功能模型 ... 31
伍、設計成果
 一、產品外觀照片 ... 32
 二、產品細部說明 ... 34
 三、產品操作流程說明 (附圖) 36

Bio-ethanol fireplace I
設計摘要

以前在氣候較寒冷的高緯度地區人們以火來取暖，隨著人們習慣定居生活後，慢慢的演化出壁爐，隨著科技的日新月異，現在人們再取暖方面有許多的選擇如電暖器、恆溫設備等...，這些設備在使用上效率高且安全性更是比真火取暖更值得人們選購，但是卻缺少了火焰的優美。
壹、設計動機

在人類歷史上人們會用火來取暖、烹煮食物與照明，在現今的社會裡人們為了安全考量上使用了各種科技來取代火的功用，時代的轉變使人們漸漸的失去對火的依賴，但是火在人們的生活上是不可或缺的一種元素，人們喜歡火焰的飄忽不定，看到火焰可以使人的心靈感到溫暖，人們甚至喜歡微微火光營造出來的氣份感，這是電器產品永遠都模擬不出來的美妙感受。
貳、設計目標

壁爐在西方建築裡是一個令人陶醉的裝飾元素，傳統壁爐在使用上不僅占空間，且清理不容易，燃料的取得麻煩，Bio-ethanol fireplace 可以使人們清理或使用上更加方便。

觀察市面上壁爐商品問題:

安全性 - 應避免各種易燃物飛入火源，防止誤觸，點火安全性有疑慮。
實用性 - 照明度因關係火焰的大小反射等等因素，市面產品些許不足。

改善市面產品的部分:

1. 整體穩定性。
2. 使用方便性。
3. 使用安全考量。
4. 提高照明度。
參、設計流程圖

1. 主題分析
2. 設計動機
3. 使用情境及使用者需求分析
4. 產品機能與結構分析
5. 競爭產品資料蒐集與分析
6. 設計規範
7. 視覺規範
8. 造型定位分析研究

初步構想提案

1. 電腦3D表現圖
2. 工程圖
3. 草模
4. 功能模型
5. 產品修改
肆、設計展開

一、資料蒐集、整理與分析

（一）火的歷史

人類運用火的技術，在東亞有文字紀錄以前，還不是件容易的事；而如何取得火、維持
火不熄滅等課題，也同樣考驗著生活在先秦時代的東亞人們。

1. 從鑽木取火、火石到火寸條

東亞地區的史前人類已見鑽木取火跟打火石的痕跡，此後一直維持到秦漢之世。南
北朝時出現了硫磺沾著於木棒，藉助火石等工具來摩擦增溫以生火，且 此方式見諸陶
宗儀《輟耕錄》，成為東亞式火柴的最早記錄。這種火柴可說是現代火柴的前身，爾後
在宋代進一步商品化，以「火寸條」兜售於市。固然這種火柴便 於生火，卻也容易不
慎引燃釀災，使其安全性堪慮。惟當時尚無安全火柴，勉強來說已屬當時最方便的生火
工具了。

2. 番仔火

閩南話將火柴稱為「番仔火」，顧名思義是外國來的火，既然火柴來自東亞的中國，
又何必崇洋媚外呢？其實這與 1830 年歐洲人，以黃磷、硫磺和氯 酸鉀為原料，改良歐
洲原來使用的火柴，亦即今日坊間買得到的火柴盒式安全火柴。這種火柴出現在稍後的
安徒生童話故事〈賣火柴的女孩〉（Den Lille Pige med Svovlstikkerne），當那位
小女孩拿起火柴棒，還得先磨擦火柴盒方能點燃的情節裡。這種安全火柴隨著歐洲人的
足跡，也在 19 世紀末傳入東亞世 界，被清朝人們稱為「番火」或「洋火」，用來表示
外國來的火柴，區別東亞原先使用的火柴。這些從歐洲傳來的火柴，歷經一個世紀的流
傳，逐漸為東亞人們接 受，並在本地進行製造，對此可參看阿部由里香的碩士論文《台
灣火柴史》一書，介紹火柴在台的產銷狀況。

3. 打火機

1898 年前後在歐洲出現了引信式的打火機，此後 1930 年代 Zippo 打火機推出後走
向汽油點燃式，並在第二次世界大戰時隨著美軍的腳步傳向 東亞。然而這些舶來品所
費不貲，東亞地區的民衆們仍以安全火柴取火，直至酒精點燃式的可拋型打火機傳入，
打火機不再高不可攀，方才逐漸取代火柴的角色，成 為近 40 年來東亞人們戶外取火的
首選，特別是癮君子……。
（二）壁爐的歷史

早期人們在小屋或住處的中心挖一個淺坑，在其中放置木材生火取暖。燃燒產生的
煙從屋頂的洞冒出。幾千年後，隨着兩層建築的出現，人們將壁爐(壁爐)移到建築的
外面。這時候的壁爐仍然是水平式的，因此常常將煙吹到外面，或是飄進屋內。後來，
利用煙囪將煙帶到住處的外面，解決了這個困擾。

1578 年的時候，Prince Ruppert, the nephew of Charles I,建立改良氣流和排放
系統的壁爐爐囪。在 18 世紀時壁爐有兩次重要的發展。本傑明·富蘭克林建
立一個對
流室，大大的改進壁爐和燃木室(wood stoves)的效率。而且，他在火堆的下方空出一
個空間(basement)吸入空氣，以造成一個由下往上的氣流，將廢氣帶到較高處。這種壁
爐後來定名 為「富蘭克林爐」，富蘭克林認為這是為公眾利益服務而拒絕申請專利。
在 18 世紀後期，Count Rumford 設計出一個高且淺的燃燒室，使其有更好的排氣效果，
能將廢氣往上引導且排放至屋外。Rumford 的設計是現代壁爐的基礎。

壁爐有個妙用，人們坐在壁爐旁邊注視火苗的變化還可以預測天氣的變化，如果火
苗是蒼白的，或者有很多不正常的火星或者爐灰結成塊，或者突然有煤灰掉
落，都預
示著下雨；如果火苗嗡嗡響，或者煙道有爆裂聲並帶來比平常更強的風，那麼預示著暴
風雨將要到來；如果火苗燃焼得更為猛烈，就預示著會有霜凍。火苗 成為了天氣預報
員，壁爐成為連線室內外的一種媒介。
（三）生物質燃料與壁爐

為什麼使用生物質酒精?

- 生質酒精是無害，降低環境汙染，燃燒安全的生物乙醇燃料。
- 生物乙醇生產的原料，如穀物和土豆。
- 生質酒精壁爐提供 3-5 千瓦/時。
- 生質酒精壁爐能加熱 300 平方呎（28 平方米）的房間，7.2°F (4°C) 在一小時內。
- 1 公升的燃料可以持續 2-4 小時。
- 不必使用排氣孔，電力或煤氣。沒有煙霧或污漬。
- 沒有額外的費用（如安裝工作，維護）。
- 它可以全年無休的為你工作。
- 可以將它從一個房間搬移到另一個房間，因為它安裝方便。
(四) 使用情境
<table>
<thead>
<tr>
<th>壁爐分析</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>燃木壁爐</td>
<td>優點</td>
<td>西方的傳統，熱量足夠</td>
</tr>
<tr>
<td></td>
<td>缺點</td>
<td>需煙囪或煙道排出煙霧以及灰塵，空間需求大，不易清潔</td>
</tr>
<tr>
<td>燃氣壁爐</td>
<td>優點</td>
<td>燃氣為能源，效率高、成本低</td>
</tr>
<tr>
<td></td>
<td>缺點</td>
<td>需煙囪或煙道，使用易燃類氣體為能源，安全隱憂較大</td>
</tr>
<tr>
<td>電壁爐</td>
<td>優點</td>
<td>以電為能源，觀賞取暖的同時防止真火有可能引起的安全隱憂</td>
</tr>
<tr>
<td></td>
<td>缺點</td>
<td>火焰變化小，無法模仿真火的變幻，停電無法使用</td>
</tr>
<tr>
<td>酒精壁爐</td>
<td>優點</td>
<td>現代壁爐市場的趨勢，以裝飾為主要目的，可移動，使用方便，容易清潔</td>
</tr>
<tr>
<td></td>
<td>缺點</td>
<td>取暖效果不及以上幾種傳統壁爐，酒精燃燒的時間不夠長</td>
</tr>
</tbody>
</table>
（六）結構分析

結構
主體
固定/支撐各部位組件
背板
吊掛
透氣孔
空氣流通
燃料
燃燒
底座
支撐/固定燃料
護欄
防止誤觸
(七) 競爭產品分析

<table>
<thead>
<tr>
<th></th>
<th>Large Black Insert</th>
<th>Diamond I Bio-Ethanol Fireplace</th>
<th>Gala Bio Ethanol Fireplace in White</th>
</tr>
</thead>
<tbody>
<tr>
<td>圖片</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料</td>
<td>煤氣</td>
<td>酒精</td>
<td>酒精</td>
</tr>
<tr>
<td>使用</td>
<td>襷入式</td>
<td>壁掛式</td>
<td>桌上型</td>
</tr>
<tr>
<td>特性</td>
<td>固定式</td>
<td>固定式</td>
<td>移動型</td>
</tr>
</tbody>
</table>
二、視覺規範

(一) 十字分析
Image board
三、設計規範

<table>
<thead>
<tr>
<th>燃料</th>
<th>生質燃料</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>生質燃料為液體，使用上應注意是否有溢出的疑慮，當燃料溢出時所產生的安全措施。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>使用</th>
<th>添加燃料</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>防止火焰回燃。</td>
</tr>
</tbody>
</table>

| 點火 | 點火時以使用者安全為第一考量。 |

<table>
<thead>
<tr>
<th>吊掛</th>
<th>未使用</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>整體支撐穩定性，減少材質疲乏現象。</td>
</tr>
</tbody>
</table>

| 使用中 | 火的溫度是否會影響整體穩定性。 |

<table>
<thead>
<tr>
<th>造型</th>
<th>設計元素</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>心情看板與簡約風格為外型設計概念。</td>
</tr>
</tbody>
</table>

Super-bio-fuel 為新一代非易燃的生質燃料，無法使用明火點燃，在燃燒時加注燃料，會降低火焰燃燒，不造成氣爆危險，不產生有毒氣體，使用需搭配燭心使用。
四、初步構想提案

（一）造形構想發展：
草圖 1
五、構想提案
(一)提案1

抽取式：
向上拉出替换反光板

兩側以折邊方式防止反光板向前脫落
Bio-ethanol fireplace

3D表现图
（二）提案 2

吸附式：
以強力磁鐵將反光板吸附於主體下方
兩側以折邊方式防止反光板向前脫落
凹槽增加反光板穩定，預留扣環空間

左右兩側凸點
向內壓取出反光板
Bio-ethanol fireplace
3D表現圖
(三) 竿模
(四) 模型修改

下方面板收納變更，所以簧銷固定取代磁力吸附。
（因磁力強度會受溫度所影響）
彈簧銷結構
面板修改

脱離卡榫處增加 5mm 圓孔，於彈簧銷固定用。
反射板厚度為 1mm，使得反射板脫離主體時較為費力，所以變更板厚為 0.5mm。
Bio-ethanol fireplace 3D model
(五) 功能模型
伍、設計成果
一、產品外觀照片
Bio-ethanol fireplace
二、產品細部說明

主體
Bio-ethanol fireplace 35
三、產品操作流程說明

1. 面板拆卸
2. 收納面板
陸、成果檢討

最後的成品，在材質選用與加工方法上還有許多改進的地方，色彩計畫應該要更完整的呈現出火焰的效果。

在材質選擇上應選擇酸洗材質的鐵板，後續加工方便表面加工與壓低成本，在色彩選擇上可以更加的多元化，如選擇白鐵加工應注意焊點是否會造成後續加工與表面處理上的不便，也可以考慮以沉頭螺絲組裝。

體積越小內部散熱越不容易，應該在底部與上方增加散熱孔，讓氣流將熱空氣帶出，才會會讓熱空氣密封於主體內部。
柒、設計心得

本學期在設計實務上了解到一個產品從無到有，文獻與資料的整理上並不容易，還需經歷多次的試驗與修改，看到最後的成品有滿意的地方也有需要修改的部分。

要製作產品前必須先了解產品的功能與實用性，市面上有許多類似的產品有改進的地方也有許多是我們可以學習的，並定義自己的方向。

3D 建模時必須考量到後續組裝與加工流程，可以讓產品更順利的完成。

畢業專題讓這四年裡學習的累積都呈現在最後的成品上，了解自己的能力有多少，看到了自己所看不到的設計盲點，這一年的專題製作讓我成長了許多。
参考資料

1. 維基百科【http://zh.wikipedia.org/wiki/%E5%A3%81%E7%88%90】

2. YOU TU BE 【http://www.youtube.com/results?search_query=%E5%A3%81%E7%88%90&oq=%E5%A3%81%E7%88%90&gs_l=youtube.3...1505.2749.0.3978.2.2.0.0.0.0.57.97.2.2.0...0.0...1ac..11.youtube.Rli45d8NSQU】

3. YAHOO 圖片【http://tw.image.search.yahoo.com/images】